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Abstract-A numerical study of the thermal stratification in an open cavity with one heated discharge is 
carried out. The inflow by a slot is located at the top of one vertical wall of the cavity and outflow occurs 
at the opposite wall. The two-dimensional flow is described by the Navier-Stokes and the energy equations. 
A finite difference scheme is used to solve these partial differential equations. The influence of non- 
dimensional parameters (Reynolds, Peclet and Richardson numbers) on the flow behavior and the strati- 

fication is examined. 

1. INTRODUCTION 

IN SOME industrial applications, such as the cooling of 
the thermoelectric generating stations, it is desirable 
to keep the hot and cold fluids separated without 
requiring physical action. This phenomena, called 
stratification, is also often employed for improving 
the efficiency of the collection and storage system [ 1, 
21. The first example, where the medium is water with 
a free surface, has been discussed by Abraham [3] 
and Hart [4] who proposed analytical models, and by 
Urban [5] who studied experimentally the stability of 
the flow. 

In the second example the fluid was confined by 
rigid walls with inflows set at various positions. Jaluria 
and Gupta [6] studied experimentally and numerically 
the thermal stratification resulting from a heated dis- 
charge at the middle of one side of a cavity while the 
exit varied along the opposite side. Their numerical 
investigations were limited to Re = 50 and Ri = 1. 
Cabelli [2] has carried out a numerical study of the 
flow and temperature fields in a thermal storage tank 
for Re = 100 and 200, Gr = lo3 and lo4 and Pr = 2. 

His tank included horizontal and vertical entries. 
When the incoming flow is horizontal, the outflow is 
set on the same side, so no comparisons could be made 
with the previous work. Oberkampf and Crow [7] 
tested a rectangular reservoir where the inflow is 
allowed horizontally at the surface on one end and 
outflow occurs at any depth on the opposite end. Their 
numerical simulations were performed for Re = 104, 
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Pr = 5 and Gr approximately 1 O’*, assuming a laminar 
flow. 

In spite of different geometries and adimensional 
parameter values used in previous works, we can con- 
clude that : 

(a) the stratification can occur in a cavity since Ri = 1 
and for all aspect ratio values ; and 

(b) current reversals occur against the wall upon the 
exit even when the incoming flow is parallel to the 
gravity vector. 

The present work deals with a hot laminar jet which 
enters horizontally into a square cavity at the top of 
one end : the exit occurs at the bottom of the opposite 
side. This geometry is known to allow the best strati- 
fication [S]. The small size of the inlet (or the outlet) 
with regard to the depth cavity was chosen to have 
the same magnitude as the size diffusers used in the 
industry. The study is focused on two points : 

(1) the understanding of the basic mechanism that 
‘arises when the stratification occurs by following 
the time evolution of the flow pattern ; and 

(2) the effect of non-dimensional parameters on the 
fluid dynamic and the stratification. 

2. PHYSICAL PROBLEM AND GOVERNING 
EGUATIONS 

We consider a laminar jet of incompressible viscous 
fluid which enters into the cavity by (1) and exits by 
(2) (Fig. 1). The equations which describe the motion 
are those expressing the conservation of mass, 
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NOMENCLATURE 

G specific heat at constant pressure Greek symbols 

9 gravitational constant e adimensional temperature 
H cavity depth L thermal conductivity 
h space step p absolute viscosity 

h, exit width kinematics viscosity, p/p 

h, inlet width : vorticity 
L cavity length P mass density 
T dimensional temperature r,, 7,. optimum coefficients of relaxation in x 
t time and y directions 
TO temperature at t = 0 * stream function. 
AT temperature difference To - To 

&I reference speed at the inlet 
u, v velocities in the x and y directions 

Subscripts 
0 inlet 

%Y co-ordinate system 
AX, A Y mesh sizes in the x and y directions. 

e exit 
el one point in front of the exit 

Dimensionless parameters 4 j mesh point (i, j) 

Gr Grashof number, gpATH3/vi P wall. 

Pe Peclet number, Pr* Re 
Pr Prandtl number, &l Superscripts 
Ra Rayleigh number, Gr*Pr dimensional quantity 
Re Reynolds number, U,,H/v, k time level k of numerical integration 
Ri Richardson number, Gr/Re’. n time level of numerical integration. 

momentum and energy. The following assumptions 
are made : ~r+~u5+~05=~(~+~)+Ri~ (2) 

(a) the fluid is Newtonian ; 
(b) the motion is two-dimensional ; and ae due au0 
(c) the physical properties of the fluid are constant Lli+:x+y’y=;(g+g), (3) 

except for density variations which affect the 
buoyancy force only (Boussinesq approximation). with : 

Then the equations describing this motion are the 
stream function, vorticity transport equation and 

a+ 

energy equation : “=-ay “‘ax 
a+ r=;+. 

These equations have been non-dimensionalized by 
(1) defining : 

H 

0 2 = h, 

-4 

L 

Fig. 1. Flow geometry : (1) inlet ; and (2) outlet. 
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The initial and the boundary conditions are defined 
below : 

(4 

(b) 

The flow is assumed to be initially at rest with a 
uniformly distributed temperature. Then u(x, y, 0) 
= @, Y, 0) = 5(x, Y, 0) = 0, KY, Y, 0) = cl and 
@,y,O) = c2 with c1 and c2 arbitrary constants 
taken equal to zero. 
On rigid non-slip boundary we have : u = v = 0 
and : 

II/= 
c, on the upper outline 

c40n the lower outline. 

c) and cq are arbitrary constants with (cj - cq) equal to 
the mass rate flow which enters into the cavity across 
the opening. Walls are taken as adiabatic or conduc- 
tive. 

(c) At the inlet 01 = J), we impose a uniform pro- 
file of both velocity and temperature. There- 
fore u(O,y, t) = 1, ~(0, y, t) = 0 = 5(0, y, t) and 
8(O,y, t) = 1. 

(d) At the exit from the cavity the temperature dis- 
tribution and the velocity are unknown. Different 
conditions can be used as : U = U,,, V = 0, 5 = 0 
and C%/C?X = 0 [2] : a slug flow was used in ref. [7]. 
Lage et al. [9] found that, in a slot ventilated 
enclosure, the outlet had little influence so zero- 
mass and heat flux conditions have been used 
in their study. In this investigation two kinds of 
outflow boundary condition were taken. In the 
first, the outflow has been assumed to be parallel. 
This choice has been determined from exper- 
imental flow visualization [lo]. The second con- 
dition, less restrictive, has been also used, with 
a((, u, 0)/8x =-0. No difference between these 
results has been observed. The following approxi- 
mations of $ and 0 have been used : 

$= = $e,+ 2 AX+O(AX*) 0, = 0. 
() el 

3. NUMERICAL METHOD 

The finite difference method has been used for com- 
putation of the complete system (l)-(3). A fourth- 
order implicit compact scheme has been adopted for 
the resolution of the Poisson stream function equation 
and a second-order one for the vorticity transport 
equation. This method using the combination of two 
finite difference schemes is the so-called combined 
method and was proposed by Lot and Daube [l l] to 
solve the Navier-Stokes equations and by Safi and 
Lot [12] to solve coupled problems. Here, the AD1 

(Alternating Direction Implicit) technique is used to 
integrate the parabolic equations. This procedure has 
the advantage that the resulting tridiagonal matrix 
instead of a matrix with five occupied diagonals can 
easily be solved by a factorization algorithm. 

3.1. Resolution of the stream function equation 
The equation relating the stream function to the 

vorticity, equation (l), was set in a quasi-parabolic 
form and solved by using the following tridiagonal 
relations between the value of I,& and its first and 
second derivatives $’ and $” at three adjacent nodes 
[13] : 

$:‘-,+4ti1+K+, =&i,-,)fO(h’), (4) 

$:‘, +1olK+g:+, =~(~~+,-2),+~,-,)+o(h”). 

(5) 

By using relation (S), we can write for each step of 
the (k+l)th iteration of the AD1 technique the 
following system : 

and 

where z, and z,, are optimum coefficients of relaxation 
in the AD1 technique [14]. For each line i = constant 
orj = constant, we have to solve a 3(N-2) x 3(N-2) 
block tridiagonal system which, in fact, can be easily 
reduced to an (N - 2) x (N - 2) tridiagonal system and 
dealt with by the factorisation algorithm. Once the 
new values of $CT ’ of the stream function have been 
computed by the tridiagonal relation (4), first deriva- 
tives (a$/CJx)$’ and (all//@);: ’ are calculated. 

3.2. Resolution of the vorticity transport equation 
A second-order accurate scheme has been chosen 

$0 solve equation (2). This choice is motivated by 
the research on simplicity in checking boundary con- 
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ditions. In order to overcome the difficulties which are 
inherent in the treatment of boundary conditions, we 
use PadC relations [ 151 to calculate the vorticity at the 
wall : 

It is important to note that these boundary con- 
ditions are always determined from the knowledge of 
$ and its derivatives. So a better accuracy for the 
computation of $ is needed. 

As for the treatment of the Poisson equation an 
AD1 time marching procedure was used for the vor- 
ticity transport. Each dimensionless time-step is 
decomposed into two successive half-steps with a 
second-order accuracy. 

If II is the index of the nth time-step, we have the 
following expressions : 

1 

1 
- z [(u&1 1./- (uO- 1.11” 

+ ~15;+l,,-21’.+~,-l.,l’f+~~ 

and 

1 
- G [W,,,, 1 -(a,,- IIn+ Ii2 

+ 

We can note that the components of the velocity u 
and v are calculated from the values of Ic, at time n. 
Therefore the total order accuracy of this scheme is 
reduced to O(h2), O(At). 

3.3. Resolution of the energy transport equation 
The energy transport equation (3) is of the same 

type as those of vorticity. Therefore we apply the same 
treatment as already described. 

The Neumann condition of the wall heat, flux is 
discretised at the first order. For every half step, one 
finally obtains the equation in the .X direction : 

1 

and in y direction : 

0:: I 1 

u”_+’ 

I I,/ 

1 
1.1 

2h Pe h2 1 

= - & wh.,, 1 - w),,- J+ 112 

+ &Pi,,+1 -2ei,,+ej,,_,y+l-*+~. 

4. DISCUSSION OF RESULTS 

Computational results are obtained for a square 
cavity with: H/h,, = 15, ho = h, and Reynolds values 
(based on cavity depth and velocity at the inlet) not 
exceeding 300. Uniform mesh size with 61 x 61 nodes 
was used. Results of the computations are given in 
the form of contour plots of temperature and stream 
function at different times. 

4.1. Basic mechanism of the stratiJicationflow 
Establishment of the stratification flow depends on 

two parameters : the thermal boundary conditions and 
the Richardson number. 

4.1.1. Effect of boundary conditions. The incoming 
flow serves to heat walls and the bounded fluid. When 
walls are perfectly conductive, this heat is mostly lost 
from the boundaries. In spite of equal magnitude of 
inertial and buoyancy forces (Ri = 1) the heat front 
moves in the direction of the exit without a tendency 
for the fluid to become stratified (Fig. 2, top). When 
the walls are adiabatic, in the absence of heat loss, the 
horizontal temperature gradients which tend to form 
in the vicinity of the inlet are accompanied by changes 
of density and buoyancy driven motion appears : the 
fluid then becomes thermally stratified at a shorter 
time as can be seen in the isotherm contours (Fig. 2, 
bottom), so only this configuration is presented in the 
following. 

4.1.2. Critical Richardson number. Even in the case 
of adiabatic walls, the stratification does not occur 
when the buoyancy force is not as important as the 
inertial force. For Ri = 0.1, the thermal front is 
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a b a b 

t-9 

Fig. 2. Effect of boundary conditions : Re = 300, Pe = 214 and Ri = 1: (a) streamlines ; and (b) isotherms ; 
conductive walls (top), adiabatic walls (bottom). 

a 

_ a 

b 

b 

a b 

a b 

R t-5.25 

Fig. 3. Effect of the Richardson number : Re = 300, Pe = 214 : (a) streamlines ; and (b) isotherms ; Ri = 0.1 
(top), Ri = 1 (middle), Ri = 5 (bottom). 
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b 

b 

a b 

a b 

Fig. 4. Effect of the Peclet number : Re = 300, Ri = 5 : (a) streamlines; and (b) isotherms; Pe = 100 (top), 
Pe = 1650 (bottom). 

pushed by the incoming jet towards the exit, meaning the upper corner decreases to be smaller than the mesh 
that forced convection is predominant and no strati- size. The jet is pushed against the upper edge of the 
fication appears (Fig. 3, top). As soon as the Rich- cavity and the associated horizontal thermal pro- 
ardson value becomes equal to 1, fluid tends to be pagation increases, providing a vertical thermal 

thermally stratified (Fig. 2, bottom). gradient. 
A secondary vortex (step 3 : t > 3 for Ri = 1 and 

t > 2 for Ri = 5) appears in the bottom comer and 
grows. This one and the main vortex turn in opposite 
directions exchanging mass flow until they reattach. 
The two vortices reduce to the little one just under the 
inlet. At this time the jet is released down and the 
thermal stratification increases to occupy the whole 
cavity (Fig. 3). 

The analysis of the flow during the time evolution 
permits us to understand the basic mechanism of the 
formation of the stratification. Three steps in the evol- 
ution of the flow pattern are observed (Figs. 2 and 3). 

First step (t < 1 for Ri = 1 and t < 0.4 for Ri = 5) : 
the incoming jet entrains fluid and forms an inner 
closed vortex at each corner of the cavity. At the same 
time a second vortex is located just down the inlet, 
while the heat front is located near the inlet. 

Second step (1 < t for Ri = 1 and 0.8 < t for 
Ri = 5) : the two vortices of the left side grow and 
form a single recirculating zone while the vortex in 

4.2. Effect of adimensional parameters 
The three dimensionless parameters which affect the 

flow appear in the system (l)-(3) and are: Re, Ri 
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b 

b 

b 

H 

b 

Fig. 5. Effect of the Reynolds number : Pe = 214, Ri = 5 : (a) streamlines; and (b) isotherms; Re = 150 
(top), Re = 300 (bottom). 

and Pe. They are, respectively, associated with the 
diffusion of vorticity, buoyancy force and thermal 
diffusion. 

42.1. Effect of the Richardson number. In the pre- 
vious discussion we showed that a critical value of the 
Richardson number is needed to obtain the stratified 
regime. Above that value the behaviour of the flow 
changes. 

Calculations were conducted for three values 
Ri = 0.1, 1 and 5 for fixed values of Re and Pe (Figs. 
2 and 3). In the two cases the basic mechanism of the 
stratification is the same but the three steps occur 
at different times depending on Richardson number 
value (see Section 4.1.2). Some differences can be 
pointed out from isotherm contour results. 

For Ri = 1 (Figs. 2, bottom and 3, middle), the 
stratification reaches the mid-height of the cavity at 
t = 4.5. Then the isotherms become distorted and 

directed to the bottom right corner to form, for a 
longer time t = 9, a separation phenomenon : the low- 
est isotherm of value 0.1 delimits a region where the 
temperature is uniform and where flow moves toward 
the exit to be withdrawn. 

For Ri = 5 (Fig. 3, bottom), isotherms remain par- 
allel up to the vicinity of the outlet and progress slowly 
through the reservoir. It means that the stratification 
is more important and more linear than in the last 
case. Consequently no separation appears. Cold water 
is pushed toward the bottom to exit from the outlet. 
The most significant change which can be observed in 
the isotherm contours is that the flow reverses at the 
end of the reservoir and forms a closed vortex just on 
the exit, and then becomes intermittent. This flow, 
detected by the previous authors, was attributed by 
Oberkampf [7] to the buoyancy force which tends to 
keep the warm water near the surface. In fact, this 
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vortex is the consequence of the selective withdrawal 
phenomena which occur in stratified mediums when 
Ri > Ri,. Yih [16] and Deppler [17] found that 
Ri, = z* for both perfect and inviscid fluids with free 
surfaces. 

4.2.2. Effect of the Peclet number. Besides the Rich- 
ardson number, the Peclet number (or the Prandtl 
number : Pe = Pr*Re) also takes a predominant part 
in the stratification process. 

Figures 3 and 4 show the pattern flow for three 
different values of the Peclet number : Pe = 100, 214 
and 1650 for Ri = 5 and 300. We can observe that the 
flow is stratified for the three values. It means that stra- 
tification depends fundamentally on the Richard- 
son number. For the first time steps (t < 3) we 

have a similar flow in the two cases. For a longer time, 
flow behaviours are different and we can notice that : 

(a) Vortices appear against walls and force the region 
of main flow to pass near edges. Vortices change 
in size with time, causing the non-stationarity of 
the flow. When Pe increases, thermal diffusion is 
less important, the flow becomes more complex 
and many vortices appear in the region near the 
boundaries. This agrees with the results of Sli- 
winski [18] who noted that the parietal regions 
are sensitive to the variation of the Richardson 
number when Pe increases. The transient cir- 
culatory motion was found to remain for a longer 
time before vanishing. 

(b) For all that, the thermal field is not disturbed. 
When Pe increases, thermal gradients become 
relatively more important as a consequence of 
increasing of the conductivity. Therefore strati- 
fication moves more slowly toward the bottom of 
the cavity. 

4.2.3. Effect of the Reynolds number. Figure 5 illus- 
trates the development of the flow and temperature 
fields for Ri = 5, Pe = 214 and for two values of the 
Reynolds number respectively equal to 150 and 300. 
It is seen that : 

(a) Even for low Reynolds values stratification 
occurs ; therefore stratification depends on Ri. 

(b) If we compare streamline contours for the two 
Reynolds numbers at the equal real times (which 
values for Re = 300 are equal to twice the values 
for Re = 150), closer similarities are found.’ The 
explanation is that the significant parameters in 
determining stratification are not Re, but Ri and 
Pe. 

5. CONCLUSION 

The numerical simulations used in the present inves- 
tigation reveal that stratification occurs when the 
Richardson number is equal to 1. Increasing this value 
increases stratification but some current reversing 
appears due to the selective withdrawal. The flow is 
shown to be strongly dependent on the Richardson 
and Peclet numbers. 
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